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As an important indicator of flotation performance, bubble structure is believed to be related with the
addition amount of chemical reagent. To differentiate film size calculated from surface froth image seg-
mentation and underlying bubble size, post-segmentation analysis is carried out to archive the prediction
of bubble size distribution from the known bubble film distribution. Based on the facts that the probabil-
ity density distribution (PDF) of film size is found to be non-Gaussian and singular feature characterizing

Keywords: bubble structure becomes insufficient, a nonparametric kernel estimator is introduced to approximate
Froth fl

Firl?; Sizoetatlon the output PDF of bubble size distribution. Through transforming nonparametric description into
Bubble size dynamic kernel weight vectors, an output PDF based detection filter is designed, according to which LMIs
Output PDF are established to solve its stability condition by Lyapunov stability analysis on the estimated error sys-

tem. Fault detection problem is then solved through a threshold criterion determined by the system sta-
bility condition. Simulation results show that desired fault detection for reagent addition in industrial
froth flotation can be achieved using the proposed method.

Fault detection
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1. Introduction

Froth flotation is a complex physical and chemical process influ-
enced by multiple operational variables such as inlet air flow, froth
depth and reagent addition. It is well recognized that froth visual
appearance observed can characterize the combining effect of mul-
tiple process conditions on flotation, and it is also known as the
indicator of flotation separation performance (Moolman et al.,
1996a). Recent advances in image processing and computer vision
based froth appearance monitoring systems contribute greatly to
the feature extraction of visual descriptors. An elaborate summary
of existed physical and dynamic froth features extraction was re-
ported (Aldrich et al., 2010), and it is pointed out linking the mea-
surable visual froth attributes and flotation performance remains
challenging and demands continuous research.

As one of the dominant visual features, bubble size has at-
tracted great interest from both academic and industrial research-
ers. Although the advent of X-ray tomography devices has given
various insights on two phase foams, the inherent opaque property
of industrial froth limits their application on bubble structure
description (Monnereau and Vignes-Adler, 1998). Computer-aided
images processing becomes a reasonable solution to interpret the
froth appearance automatically due to its simplicity and low cost
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(Aldrich et al., 1997). From then, froth segmentation techniques
are discussed for subsequent bubble size feature extraction.
Numerous computer vision based approaches have been reported
to segment the closely packed surface bubbles including white
spots detection (Wang and Wang, 2000), watershed method (Bon-
ifazi et al., 2001; Sadr-Kazemi and Cilliers, 1997), wavelet transfor-
mation (Liu and MacGregor, 2008; Liu et al., 2005), valley edge
detection (Wang et al,, 2003) and their varieties (Yang et al,,
2009b). However, post-segmentation analysis is confined to ex-
tract singular feature such as average surface film size or variance
for analysis convenience, with the unreliable assumption that the
surface film size distribution is Gaussian. There also exists several
attempts of classifying bubble size into several categories such as
large, middle and small size (Holtham and Nguyen, 2002; Liu
et al., 2005), to each of which corresponding operating strategy
set can be performed. A more recent simulation research empha-
sizes the remarkable difference between the surface film size dis-
tribution and the surface bubble size distribution (Wang and
Neethling, 2006), which indicates that more often computer vision
based research on bubble structure tends to simply regard the sur-
face film size calculated from froth image segmentation as the ac-
tual bubble size. Wang proposed an empirical formula that relates
the surface film size distribution and the internal bubble size dis-
tribution (Wang and Neethling, 2009). It is worth noticing that
the probability density distribution (PDF) of surface film size is
found to be non-Gaussian (Yang et al., 2009a). Further exploring
of the information indicated by froth structure has shown that
the film size distribution is highly skewed, which neither belongs
to any existing mathematical model based distribution. To depict
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Nomenclature

hyise unbiased optimal bin width of the histograms

np number of surface films provided by the segmented
froth image

Iy radius of the 2D surface film

Tp radius of the 3D bubble

frequency distribution of r/r,

S(rp frequency distribution of bubble size

K(rp) frequency distribution of film size

fix) probability density function

K(x) pre-specified kernel function

w; weight of the ith kernel function

h window width of the kernel estimation

Z; center point of the ith kernel function along the

horizontal axis

frer(z, 1) output PDF

u(t) control input

w(z, u, F) approximation error

X(t) estimation of the state x(t)

A, A4, H, Hy, E identified system parameter matrices of the weight
system

d positive constant representing the time delay

L filter gain

o standard deviation of the surface film size popula-
tion

&(t) residual signal

o(z) pre-specified weight vector

B threshold of the system

1 supremum of approximation error

the unknown continuous process of froth flotation, nonparametric
estimation provides a credible solution. Commonly used nonpara-
metric estimation techniques include histogram, frequency poly-
gon, shift average histogram, kernel methods, wavelet method,
and B-spline expansion models (Zhang et al., 2006). Theoretical re-
searches on tracking the output PDFs to a target distribution shape
by using various control approaches (Guo et al., 2008) can also in-
crease the possibility of froth visual features based process control.

To relate the flotation operation condition with bubble structure,
O’Connor et al. revealed that the increase in pH causes bubble size to
increase (O’Connor et al., 1990). Consequently, the variance of bub-
ble size has great effect on the probability of collision between min-
eral particles and bubbles, as well as the adhesion of these particles
to the bubbles. According to the principle that the length of Plateau
border per unit volume of foam is reversely proportional with the
square of the radius of individual bubble sphere and meanwhile pos-
itively proportional to process water recovery, the continuous in-
crease of bubble size can lead to lower total surface area with
decreased water recovery and result in the deteriorating perfor-
mance of mineral concentration flow rate as well as mineral recov-
ery. Moolman also claimed that the result is consistent with the
observationin the case of pyrite, and the mineral recovery decreased
at higher pH’s (Moolman et al., 1996b). Conventionally, industry
process fault detection heavily depends on the frequent inspection
of froth views and manipulation of experienced human operators,
which is often problematic with serious delayed responses. Along
with the implementation of online monitoring system of froth visual
appearance, quantitative fault detection becomes highly desired
and essential to maintain the operational variables at acceptable
rates. Cilliers proposed a quantitative fault detection and diagnosis
model which is successfully applied for hydrocyclones (Cilliers and
Swartz, 1995). In industrial case studies of apatite and sphalerite flo-
tation, it is revealed that the overall mineral concentration changes
were essentially caused by the chemical addition, accompanied by
clearly froth spectral intensity changes, on basis of which a fault
detection scheme is introduced (Niemi et al., 1997).

This work aims to explore the froth structure by using kernel
density estimation technique to approximate the output PDF of
surface bubble size distribution rectified by the empirical formula
and its application on process fault detection. Nonparametric ker-
nel descriptor is designed to reflect the variety of the PDF curve
such that the output PDF is formulated in terms of dynamic
weights, by which a system model with time delay is established.
And an effective fault detection criterion is determined by using
linear matrix inequation method. The chemical reagent addition
fault is successfully detected on the industrial data of off-line froth
images. Next section introduces bubble characteristic oriented

watershed segmentation scheme and post-segmentation analysis.
Section 3 presents the nonparametric density estimation and ker-
nel density estimators. The kernel weight vector based fault detec-
tion filter model is proposed in Section 4. Section 5 presents the
experimental results and discussion. Conclusion is provided in
the last section.

2. Surface 2D film size distribution to 3D bubble size
distribution

Experimental setup consists of RGB camera with resolution of
600 x 800 and lens of 49 mm, high frequency light source, cover
hook protecting camera from dust and ambient light, optical fiber
with length over 200 m for signal communication to industrial PC
computer in operating room, shown in Fig. 1. The camera is
mounted 110 cm vertically above the froth surface of the target
cell, and froth images with window size 12 x 9 cm? are captured
online at the rate of 7.5 frames/s. Meanwhile, the corresponding
process operational and performance data are collected on indus-
trial scale.

Froth images collected from industry field displays that each
bubble has a convex shape which leads to the appearance of white
spots. The existing froth segmentation methods such as white spot

Fig. 1. Image acquisition hardware configuration. Image acquisition hardware
configuration in flotation industry includes: RGB camera with resolution of
600 x 800, high frequency light source, cover hook protecting camera from dust
and ambient light, optical fiber with length over 200 m for signal communication to
industrial PC computer in operating room. The camera is mounted 110 cm vertically
above the froth surface of the target cell, and froth images with window size
12 x 9 cm? are captured online at the rate of 7.5 frames/s.



C. Xu et al./Minerals Engineering 26 (2012) 5-12 7

detection, watershed, and valley edge detection are derived from
this fact. Froth image observed is a type of gradient images. The
highest gradient with high grayscale values often appears to be
around white spots, which are not the target boundaries between
bubbles. The real edges between bubbles are with lower gradient
magnitude, some of which are local minimum intensity. Wa-
tershed based segmentation happens to be able to detect the catch-
ment basins of all minima marked beforehand, which provides a
solution to segment bubbles without background region. To find
the accurate watershed lines separating bubbles, morphological
opening and closing based reconstruction using iterated gray-scale
dilations is firstly applied for de-noising purpose. The white
spotlights reflected on each bubble are extracted as makers. The
watershed line can be eventually identified through the accom-
plishment of immersion process. Segmentation result of the on-
line acquired froth image in rougher cell is shown in Fig. 2.

It is admitted that the bubble structure is of great importance.
Neethling claims that bubble size determines water recovery with
an inverse squared relationship (Neethling et al., 2003). Recently,
bubble size is used as factor in a simplified froth recovery model.
Ross points out that using only average bubble size as bubble
structure feature can cause misleading or even false conclusion
(Ross, 1991). Nevertheless, researchers tend to only focus on
extracting singular statistical features such as mean, standard devi-
ation, kurtosis or skewness representing the bubble structure,
which are incapable of representing the entire profile of bubble
size probability density distribution. Another misleading point is
the shortage of understanding on the difference between the sur-
face film size distribution and the surface bubble size distribution.
Computer vision based research on bubble structure tends to sim-
ply regard the surface film size calculated from froth image seg-
mentation as the actual bubble size.

To solve above two problems, the empirical formula proposed
by Wang and Neethling (2009) is used to relate the surface film
size distribution and the internal bubble size distribution. After
segmenting the bubble films, the surface film size distribution is
provided using histogram estimation. The unbiased optimal bin
width hy;, of the histograms (Scott, 1979) is determined by:

3 1/3
Npe = (%ﬁ) ~350n," )

where n, is the number of samples which refers to the number of
surface films provided by the segmented froth images, ¢ is the stan-
dard deviation of the surface film size population.

Fig. 2. Segmented froth image. Morphological opening and closing based recon-
struction using iterated gray-scale dilations is applied for de-noising purpose. The
spotlights reflected on each bubble are extracted as makers. The watershed line can
be eventually identified through the accomplishment of immersion process.
Segmentation result of the on-line acquired froth images in rougher cell is
presented.

Film size is affected by the bubble radius, the distortion and the
position of a bubble relative to its adjacent surface bubbles. Wang
points out that there is no simple one-to-one relationship between
film size and bubble size (Wang and Neethling, 2009). Observation
from simulation has shown that the ratio of the 2D surface film size
17 to 3D bubble size r;, displays a frequency distribution indepen-
dent of bubble dispersity level, which can be estimated by an
empirical formula for constrained surfaces:

AN 3.51(ry/rp)*
! (E) ~ 1+exp(56.43(r;/r, — 1.08)) @

where f(r/rp) is the frequency distribution of r4/r,. Formula (2) is the
key to relate the film size distribution and bubble size distribution,
which can be expressed as:

Fi) = | mof(r—f)sm)drb 3

Tp

with discrete form:

F(rp) ~ sz‘in (%)S(rbi)Arbi (4)

Tbi=0

The frequency distribution of film size F(r) can be calculated
from frequency distribution of bubble size S(r,) and the frequency
distribution f{r4/rp). The inverse prediction model can reconstruct
the 3D bubble size distribution from a given 2D surface film size
distribution, which is highly desirable for froth flotation. With
the given 2D surface film size distribution provided by image seg-
mentation analysis, the successive aim is to predict the surface
bubble size distribution based on the known film size distribution.
By formula (4), numerical iteration updating S(r}) is used to recal-
culate the estimation values for F(ry)* until the squared error
(F(rp)* — F(rf))2 can be minimized and S(r,) remains positive for all
T'p.

Fig. 3 shows the inverse prediction results. As expected, the dif-
ference between 2D film size distribution and 3D bubble size dis-
tribution are not remarkable due to its poly dispersity with NSD
of 0.13 for segmented industrial froth image in Fig. 2. The size
probability density distribution is found to be non-Gaussian with
kurtosis value 4.94 and skewness value 0.85.
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Fig. 3. Reconstructed 3D bubble size distribution from 2D surface film size
distribution. The difference between 2D film size distribution and 3D bubble size
distribution are not remarkable due to its poly dispersity with NSD of 0.13 for
segmented industrial froth image.
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3. Nonparametric kernel estimation

The post-segmentation analysis exhibits that probability den-
sity function (PDF) distribution of bubble size is non-Gaussian. Un-
like traditional method applying singular feature such as mean or
variance with the assumption that the distribution is normal, prob-
ability density distribution is suggested to accurately describe sta-
tistical feature of froth structure. The fact that the mathematical
model of distribution is unknown makes nonparametric estimation
method fitting to depict the unknown continuous process of froth
flotation. Consider a probability density function f{x) describing the
probability distribution of x in (a,b):

Pla<x<b)— /bf(x)dx (5)

Density estimation accomplishes the fitting of f{x). Though clas-
sic nonparametric histogram estimator is good for data presenta-
tion, its discontinuity causes difficulty if derivatives of the
estimates are required. A continuous version of the histogram is
the frequency polygon formed by interpolating the midpoints of
a histogram (Scott, 1985). Histogram based methods seek the bal-
ance between estimation accuracy and feature dimensionality,
which can be very expensive for large samples. Apart from the his-
togram, the kernel estimator is most commonly used, which is gi-
ven by:

Frer(%) = % gx (" —hx,-> - gwix (" —hx,-> (6)

where the function K(x) is the pre-specified kernel function satisfy-
ing [K(x)dt =1 to ensure a bona fide density estimate. w; is the cor-
responding weight of the ith kernel function, and h is the window
width. Based on the prototype of standard normal kernel function,
a kernel function fitting for froth flotation is constructed as:

z-Z; 2

zZ—27; 1 _(h> z—1Z;
K( A )_h\/Z—nEXp 5 -0 <= < (7)

where K((z — Z;)/h) is the ith kernel function, and Z; is the center of
the ith kernel function along the horizontal axis. Adjusting to the
range of bubble radii, a number of kernel bases are selected to de-
pict the size distribution. Its window width h is fixed across the en-
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Fig. 4. Normal kernel estimation and the weight coefficients. Figure illustrates the
choices of ten kernel bases with fixed window width, which is plotted in dashed
line. Two dotted curve presents the second and third kernel basis multiplying the
corresponding weight coefficients. The estimation result of Fig. 2 buzzle size
distribution is plotted in solid line.

tire sample. Fig. 4 illustrates 10 kernel bases with fixed window
width, which is plotted in dashed line. Two dotted curves present
the second and third kernel basis multiplying the corresponding
weight coefficients. And the estimation result of Fig. 2 buzzle size
distribution is plotted in solid line.

Fig. 5 presents the comparison of two density estimation meth-
ods of segmented froth image in Fig. 2. The optimal bin width of
histograms is chosen based on formula (1). Comparison results
have shown the kernel estimation can accomplish the description
of bubble size probability density distribution with general lower
feature dimensionality than histogram method.

4. Output PDF kernel estimation based fault detection

A fault is defined as the departure from an acceptable range of
an observed output or operating variable (Himmelblau, 1978).
Timeous detection of fault can determine whether the abnormal
condition occurs (Cilliers and Swartz, 1995). In the case of froth
description, it is reported that gradual increase of bubble size to
certain degree can affect the critical pressure above which the bub-
bles rupture (Neethling and Cilliers, 2008) and will eventually lead
to a fault condition deteriorating the process performance. The
information indicated by bubble structure is a combining effect
of multiple operational variables such as froth depth, inlet air flow
and chemical reagents. It is known that by retaining the variance of
froth depth and inlet air flow during a short period of time, bubble
size is positively related to pH value which is determined by the
dosage of activator Na,Cos. Human operators are in capable of per-
forming timeous monitoring of various process variables, and the
process manipulation mostly is relied on heuristics of their froth
view observation. In some cases, the non-measurable input is to
be inferred from the measured parameters, which requires a pro-
cess model established so as to relate both sides (Isermann,
1984). By monitoring the froth appearance such as bubble size,
the process fault status can be inferred and identified based on
established system model.

Supposing there is a dynamic stochastic system with input
u(t) € R™ and output y(t) € [a,b], the probability of output y(t) lying
in [a,¢&) is defined as:

Pa<yin<o= [ frer(z,u)dx (8)

T N
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Fig. 5. Comparison between Normal kernel based method and histogram method
for Fig. 2 bubble size density estimation. The optimal bin width of histograms is
chosen based on formula (1). The comparison results show the kernel estimation
can accomplish the description of probability density distribution of bubble size
with lower feature dimensionality than histogram method.
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where the fie(z,u) represents the output PDF, in this case the PDF
distribution of bubble size after froth image segmentation analysis.
u(t) is control input such as the input amount of Na,CO3; which is a
dominant operational condition in the flotation system. The fye (z,u)
can be approximated by kernel estimators designed in formula (7)
and the corresponding weights w;.

To avoid the weight coefficients changing to negative values,
the output PDF model with an approximation error w(z,u,F) is
adopted as follows:

fra@.u F) = 3 Wi, FK(2) + o(z,u.) ©)
i=1

where Kj(z) (i=1,2,..,n) are pre-specified kernel function on [a,b],
wi(u)(i=1,2,..,n) are the corresponding weight vector associated
with u(t). It can be supposed that |w(z,u,F)| < 5, where § is a known
constant.

Denote
Ko(2) = [ki(2), k2 (2). ..., kn1(2)] (10)
W(t) = [wl(u,F),wz(u,F),...,wn,1(u,F)]T (11)

Since jffke,(z,u)dz =1, ff ki(z)dz=1,i=1,2...... n—1, it is
certain that there are n — 1 independent weights. So (9) can be
rewritten as:

frer(z U, F) = KT (2)W(t) + h(W())kn(2) + (2, u, F) (12)

where K(z) = Ko(z), h(W(t)) = 1 — 15 wi(u, F), h(W(t)) is the corre-
sponding weight of k;,(z).

The description of the output buzzle size PDF has been trans-
formed into a dynamic weight model, which is the key to design
the fault detection filter. The following filter is designed as:

X(t) = AX(t) + Agk(t — d) + Hu(t) + Hgu(t — d) + Le(t)

&(t) = Jy 0(2)(frer (2, (). F) — fieer(z. u(0)))dz (13)
W(t) = EX(t)

where X(t) is the estimation of the state x(t), A, Ag, H, Hq, E are the
known system parameter matrices of the weight system, d is a po-
sitive constant representing the time delay, L € R™P is the filter
gain. Residual signal ¢(t) is formulated by the integral of the differ-
ence between the measured PDF and the estimated one. And
a(z) e R™1 is a pre-specified weight vector on [a,b]. In practice,
the residual signal ¢(t) can be regarded as the defined distance of
the bubble size PDFs between two froth images before and after
the fault.

(9)

Fig. 6. Segmented industrial froth images captured on an hourly basis which are under the same condition in terms of resolution, angle, light condition, position, view scale,

etc.
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Define x(t) = x(t) — X(t) as the error state vector, which is used
to describe the change of weight function before and after the out-
put PDF curve changed. The estimated error system can be de-
scribed as

X(t) = (A — LT)R(E) + Agk(t — d) — LT3 [h(Ex(E)) — h(EX(D))]

— LA(t) (14)
where Ty = [* 0(2)K" (2)Edz, T, = [’ 0(2)ki(2)dz, A(t) = [’ o(z)o
(z,u,F)dz.

According to the Lipschitz condition, there exists a known ma-
trix U; satisfying:

IR(Ex(t)) — h(EX(t))]| < [IULE(x(t) — X(0)) ]| (15)

And the residual function can be acquired that

&(t) = I'1x(t) + T (h(Ex(t)) — h(EX(t))) + A(t) (16)
Since |w(z,u,F)J]<d, it can be seen that [A(t)|=

17 e@w(z.u, P <3,

~ b

0= (3/ o(z)dz (17)

Through using the output PDF based detection filter, a criterion
can be designed to detect the fault. Lyapunov stability analysis is
carried out on the estimated error system, and LMIs are established
to solve its stability condition.

Theorem 1. For the parameter /, if there exist matrices P> 0,Q > 0,
R and constant # > 0 satisfying

Iy + 1’]’ PA; —ARI,
¥—| AP -I+ny 0 |<O (18)
—R" 0 -1

where Tlp = (PA—RI')+ (PA—RI'1)" +Q — LE'UUE. Then the
system is stable. '

The proof of Theorem 1 is presented in Appendix A.

It is known from the proof that when system is stable, the error
state vector satisfies:

X < o= maX{ sup |5<(t)|~,1115||R|} (19)
—d<t<0

And the fault F(t) can be detected by a threshold criterion calculated

from the norm of residual signal:

le(O)ll > B := (| T1l| + T2 UL I[[E]) + 9 (20)

where « is determined by (18). When the norm of residual signal is
larger than the threshold value g evaluated by Theorem 1, the fault
can be detected.

5. Experimental results and discussion

To evaluate the proposed PDF estimation based detection mod-
el, a series of industrial experiments are carried out in a Chinese
bauxite froth flotation plant. In the test runs, froth image videos
are captured through the previously introduced monitoring system
in the first rougher flotation cell. Subsequently, the froth videos are
processed by the developed image analysis software which is capa-
ble of extracting bubble features on line. Fig. 6 presents the froth
image segmentation results, which are collected and analyzed un-
der the same condition in terms of resolution, angle, light condi-
tion, position, view scale, etc.

In practical flotation process experiments, the air flow rate and
feed-in conditions are kept at a steady state so as to stabilize the
production process. The addition of activator Na,CO3; becomes

the major manipulating parameter, which directly determines pH
value. As an indication of chemical addition, the bubble structures
are one of determinants of mineral separation efficiency. Small
bubbles with relative maximum surface area generally carry more
valuable mineral particles, whose corresponding pH value is to be
maintained to an acceptable bounded range. When one of the
dominant operating variable chemical reagents is fluctuated, in
this case the addition of Na,Cos, given that the collector KL and
depressor 6P retain the regular amount, froth surface visual fea-
tures such as bubble structure and color spectral information are
reacting to the change of pH value. An increase in activator Na,CO3
addition was considered such that its simultaneous effect on bub-
ble size distribution can be identified. As is shown in Fig. 6, the
froth images evolved as the pH value increased gradually during
a day, and the corresponding operational conditions were mea-
sured at the same time.

As for post-segmentation analysis, normal kernel with follow-
ing basis functions is selected according to formula (7). The win-
dow width h is set to be 1.5 as a smoothing parameter, and
centered points of each kernel Z; = 3.5i, (i = 1,. . .,10). Since the bub-
ble radius involved ranges from 1 to 40 pixels (about 0-0.6 cm), the
kernel functions with fixed window width are supposed to cover
the entire radius range. Thus, the bubble size distribution can be
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Fig. 7. The 3-D mesh plot of the output PDF. By applying the kernel estimation
proposed in formula (7) to approximate the bubble size distributions of froth
images in Fig. 6, the 3-D mesh plot of the output PDF when fault occurs is presented.
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Fig. 8. The threshold and the responses of the norm of the residuals. The threshold
with dotted line and the responses of the norm of the residuals froth images in Fig. 6
with asterisks are presented. It can be noted that the fault is successfully detected
with the norm of residual over 0.0036.
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approximated by (12), where n = 10. The weights w;(u, F) of normal
kernel expansion have dimension of n, only n - 1 of which are inde-
pendent. The approximation error |w(z,u,F)| < 6, where 6 ~ 0.001 .

By applying the kernel estimation on the bubble size distribu-
tion of froth images in Fig. 6, the 3-D mesh plot of the output
PDF is shown in Fig. 7. At an hourly interval, the froth image video
is captured at the point since it is reasonable to consider that the
bubble size distribution is representative during a short time per-
iod in this study case. Meanwhile, the process operational condi-
tions are measured on an hourly basis correspondingly. As can be
seen, the bubble size distribution tends to shift dramatically when
the addition of the activator Na,COs; changed from 3293 g/t at
11:00 to 4129 g/t at 12:00, which resulted in pH value increased
from 9.43 to 9.65 in response. And a continuous increase of pH val-
ues to 9.7 products a corresponding upward change of bubble size.
Accordingly, the separation performance mineral recovery deterio-
rated from 73% at 11:00 to 50% at 15:00.

The fault detection filter model applied in this case is estab-
lished as:

X(t) = AX(t) + Agx(t — d) + Le(t)

&(t) = f2 0(2) (frer(z,u(t), F) — frer(z,u(t)))dz
W(t) = x(t)

(21)

where A =diag{—0.83,-0.83, ..,—0.83} € R%*°, Ay=diag{0.2,0.2,...,
0.2} € R>*®,

Consider the delayed input as u(t) = Agx(t - d) where time delay
d=2. Since the error system converges to zero and stabilizes,
—0.83 is given as the converging rate, and the coefficient A, is
the impacting factor of delayed input on present state. In formula
(17), set a(z) =1, |A(t)| < 0.001 = 5. There exists a known matrix
U; = diag(1,1,...,1) € R®*° satisfies formula (15). To detect the fault,
using LMI toolbox to solve the inequality of Theorem 1, 1 =1,
n=0.176, o = 0.00088. According to B = o(||I'1] + |[2|||IU1|l|EI)+

Table 1
The detection performance of the testing database.

Samples with correct Samples with incorrect Accuracy rate

detection detection (%)
Fault status 26 1 96.3
Stable status 8 2 80
Total 34 3 91.89
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Fig. 9. The residuals of the testing froth video database. The dotted line represents
the threshold for fault detection, and asterisks are the norms of the residual of each
video sample. Three asterisks with outside circles are the samples with incorrect

fault detection.

Video samples

5, threshold value can be calculated as = 0.0036. Setting Fig. 6b
as the standard PDF, Fig. 8 shows the threshold with dotted line
and the responses of the norm of the residuals ¢(t) for froth images
in Fig. 6 with asterisks. As can be seen, Fig. 6d-g are clearly iden-
tified as fault status because the residuals ¢(t) > p according to for-
mula (20), which are consistent with the observation results from
human operators.

Attempts have been made in calculating false alarm rate on a
testing database. The testing data consist of 37 offline froth videos
captured from the bauxite flotation industry during April of 2010.
The fault detection is accomplished by a threshold criterion calcu-
lated from the norm of residual signal in formula (20), according
to which the residual signal above the threshold value indicates
that a fault occurs. Table 1 gave the detection performance of the
testing database. As can be seen in Fig. 9, dotted line represents
the threshold for fault detection, and asterisks are the residual of
each video sample. Three asterisks with outside circles are the sam-
ples with incorrect fault detection. The 19th sample should be cat-
egorized to the fault status, and the 18th and 22nd samples belong
to the stable status in the system. The total fault detection accuracy
on the database is 91.89%. It is possible that the false detection
alarm ascribes to the segmentation malfunction of the captured
froth images.

6. Conclusion

In this paper the description of bubble size probability density
distribution and its inference to identify chemical operational sta-
tus are investigated. After watershed segmentation analysis on
froth images, the relationship between the film size distribution
and the bubble size distribution is explored. Due to the poly disper-
sity of bubble distribution of the target froth images, the difference
is not as remarkable as expected. Unlike tradition discussion of
bubble structure focusing only on singular features including mean
and variance insufficient to characterize the distribution profile.
Nonparametric estimation based non-Gaussian stochastic vari-
ables are concerned. By using the normal kernel approximation,
the fault detection problem is solved through a criterion determin-
ing the threshold of the norm of residual signal. Desired fault
detection for reagent addition in froth flotation industry is
achieved using the proposed method.

Appendix A

Proof of Theorem 1. Denote

I, + /*RIHR'TY PAy
Alp —I

0=

Using the Schur complement, IT < 0 < Il + 5l < 0. Define
the Lyapunov candidate as follows:

D(t) = P(t,X(1), X(1), X(1))

=X (t)Px(t) + /tidicT(r)ic(T)dr +;—2 /0 [|U1Ex(7)|)?
— |h(Ex (1)) — h(Ex(1))|*]dT
Expand the derivation of this formula:
@(t) = X' (t)P[(A — LI'1)X(t) + AgX(t — d) — LI'5 (h(Ex(t)) — h(EX(t)))
— LA(t)] + X" (£)(A — LT1)" + X7 (t — d)A] — (h(Ex(t))
— h(E&(6)))"(LT,)" = (LA(®))IPX(t) + X" (H)X(t) — X (t — d)X
x (t—d) +j—2u|ulEfc(t>\|2 — [Ih(Ex(t)) — h(Ex(t))[*]
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Combining of similar terms

@(t) = 2%(t)(PA — RI)X(t) + 2X(t)PAX(t — d) —
— h(EX(t))] — 2X(t)RA(t) + X" (t)x(t) — X" (t —

)1

+ X(£)PAgX(t — d) +X(t — d)PAsx(t)

2X(t)RI[h(EX(t))
d)x(t — d)

+ :—2 [1ULEX(t)[|* — [ h(Ex(t) — h(EX =X'(t)[(PA —RI'1)
+ (PA—RI)" + I&(t )
—X(t—d)x(t —d) + ;2 UL EX(8)||* — f(llh(EX(t)) h(EX(1))|*)
— 2X(t)RIZ[hE(x(t)) — h(EX(1))] — 2x(t ) A(t) <X'(t)[(PA—RI)
+ (PA—RI))" + IX(t) + X(t)PAGX(t — d) + X(t — d)PAsX(t)

— Xt - X (6)E'UTULEX(t) + 22X" (t)RT2R"THx(t)

1
(PA—RI"])T+I+)—2

d)x(t — d) +

— 2X(t)RA(t) = X" (t)[(PA — RI"y) + E'UTULE

+ A2RI,RTTHIX(t) 4 X(t)PAGX(t — d) + X(t — d)PAGX(t)

% (t— d)x(t — d) — 2X(ORA(E) = (’:‘(t) d)>THO<N(5<<t) )

X(t — X(t—d)
— 2X(t)RA(t)
So

. x(t) T X(t) N
o(t) < (k(t_d)> Ho<5{(t_d)> — 2X(t)RA(t)

where R=PL. when [%(t)]| < [%(t—d)[, ¢(t) < —2n]X()|([X(t)]—
n~16||R||), which means that if ||X(t)|| < #~16||R|| then #(t) < 0. And
similarly when [|[X(t)]| > [&(t — d)[l, (t) < —2nlR(O)]|(|%(t — d) ]|~
n1|R|), so ¢(t) <0 if |x(t—d)|| =n'6|R|. Thus, when
[%(t)|| = n~'5||R||, ® < O holds, which means if ||X(t)|| < #~'5||R|| oc-
curs, @ start to be above zero, and the estimation error system is
stable.

From the proof of Theorem 1, it can be seen that there exist a
threshold of the fault to be the criterion of detecting the fault. Here
we use the norm of the residual to calculate the fault.

e < ITX(O)] + 12l [R(EX(E)) — h(EX()]| + [AD)]
SR+ T2 UL TETIXOL + A
S o[+ IT2(IUEN) + 0 = B

when |&(t)|| = B, there happens a system fault. Then the proof is
complete. O
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